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Abstract

For the collective gravithermodynamic Gibbs microstates the connection between
all thermodynamic potentials and parameters of matter have been found. This
connection is realized with the help of four hidden wave functions that can take
arbitrary values with certain probability. The possibility of obtaining the known
equations of thermodynamic state of real gases is shown based on the use of both
their the limit velocities of individual (separate) motion and the mathematical
expectations precisely of these four nonspecific hidden parameters (wave
functions) and functions of them. It is substantiated that in a quasi-equilibrium
state, a real gas has spatial homogeneity not only of its entropy but also of the
resulting extensive parameter (an indicator the compressibility coefficient). But
the radial values of resulting intensive parameter (an indicator of hierarchical
complexity and of quasi-equilibrium of cooling down) of a real gas are invariant
in time.

Keywords: thermodynamics, gravity, gravitational field, inert free energy, Gibbs
microstate, hidden variables, wave functions.

1. Introduction

Equations of state of matter are a necessary complement to the laws of thermodynamics. They allow
the application of the laws of thermodynamics to specific substances and systems, since the laws of
thermodynamics by themselves do not provide complete information about the state of the system.
Equations of state cannot be derived from the laws of thermodynamics alone. They are obtained
experimentally or theoretically, using ideas about the structure of matter, for example, methods of
statistical physics.

The most famous equations of state for real gases are the generalized Clapeyron—Mendeleev
equation, the van der Waals virial equation (1873) [1], the Dieterici equation (1898) [2], the
Berthelot equation (1900-7) [3], the Kamerlingh-Onnes virial equation (1901), the Beattie—
Bridgeman equation (1927) [4, 5], the Benedict-Webb—Rubin equation (1940-42) [6 — 9], the
Redlich—-Kwong equation (1949) [10], the Soave—Redlich—-Kwong equation (1972) [11, 12], the
Peng-Robinson EOS (1976) [13], etc. [14 — 35].

Studies of the spatially uniform compressibility coefficient of gases and liquids are important
[21, 23, 27, 36 — 39]. It may also be important for the analysis of the cooling process of the hot
Universe (when the Universe was uniformly filled mainly with hydrogen) to find out the value of

the time-invariant intensive thermodynamic parameter 4, =T 25/ pV . The most popular, practical,
and perfect are the van der Waals virial equation [1, 15 — 17, 24] and the Benedict—-Webb—Rubin



equation of state [6 — 9, 18, 20, 25 — 35]. But they are also purely empirical and artificial. After all,
they are based on the use of only coefficients and corrections, and not thermodynamic nonspecific
hidden parameters, which are wave functions capable of taking any values with a certain
probability. Therefore, these equations of the thermodynamic state of matter do not allow us to
obtain a set of multitude Gibbs microstates for matter. Moreover, they do not allow us to obtain
equations of spatially inhomogeneous quasi-equilibrium thermodynamic states of astronomical gas
clusters that gradually cool down. It is to the solution of these important and urgent problems that
the proposed in the article results of careful theoretical research of the author are devoted.

Internal energy U of real gases, liquids and solid matters depends on many pairs of their
intensive A, and extensive a, thermodynamic specific hidden parameters. And there are a very

large number of those parameters in solid substances, and therefore the internal energy in these
substances is very significant. Those facts prompt us (in the general relativity (GR)) to falsely

A

identify the inert free energy E, =migcv,, of matter with the multiplicative component

U, =Ugyc/v,, ofits thermodynamic internal energy due to the use (in the GR) of the eigenvalue of

the hybrid enthalpy A 00 = MooC” + PooVoo = H roV., / ¢ =const(r) that is invariant along the radial
coordinate » (in the gravitational quantum time of the matter [41]). Similarly, in relativistic
gravithermodynamics (RGTD), the ordinary rest energy W, = my,c® /v, = G, of matter is identified

with the multiplicative component G of the Gibbs thermodynamic free energy G [41]. Here: m,
and m,, are the eigenvalues of the mass of matter that is not under pressure and the true mass of
the matter, respectively; po Voo = pVv,., /c=const(r); Uy =const(r), p,, #const(r) and
Voo # const(r) are eigenvalues of the multiplicative component Uy of the internal energy U, of the

pressure p and of the molar volume V' of the matter, respectively; v., and v, are the coordinate
pseudo-vacuum velocity of light of the GR and the equivalent (but not identical) limit velocity of
individual (separate) motion of matter (which at the same point in space may be different in the
RGTD for different matters) respectively.

However, what is considered here are not at all specific hidden parameters characterizing
thermodynamic macrostates of matter, but rather non-specific hidden variables that are mutually
related to thermodynamic natural parameters (pressure, molar volume, temperature, and entropy).
In addition, non-specific hidden variables that form Gibbs microstates, unlike specific internal
macroscopic parameters, can instantly take any values with a certain probability.

Internal energy can also be shown as a sum of internal energy of hypothetic ideal gas (liquid)

U, and output of multiplication of resulting intensive A (r)=TS/R.(1)=T ’S/pV and

extensive a (1) = R, = pV'/T thermodynamic parameters:

u=U, +iAiai =U,+4,a,,
i=2
du=T,dS, +4,da,—pdV =TdS—pdV ,
where: T,,=TR./R,,, S,=SR,/R,, A,a,=T,S,=TS. For gases: a=R,BV'", B, is virial
coefficients that depend on both temperature and individual gas properties [40], while R, is
universal gas constant and R, (r)=pV/T=const(f) is thermodynamic parameter of gas, that
determines the compressibility coefficient Z =R, /R, of the gas and does not vary in space at

conditions of quasi-equilibrium cooling down of gas (is the same on any radial distance » from the
gravitational attraction center in the comoving to it frame of reference of spatial coordinates and
time ¢ (FR)). And exactly this invariability in space of R.(f) is responsible for the fact that

properties of real gases that gradually cools are close to properties of hypothetical ideal gas.



“Ideal” component U, of internal energy is de facto identical to Helmholtz free energy F;,
while “ideal” component /,,, of enthalpy is identical to the Gibbs free energy G:

U,=U-a,A,=U-ST=F,,  Hy=H,~a,A=H,~ST=G,
dU,, =T, dS,,~a,dA, ~ pdV =(TdS 1> aR )~ (ST +TdS 1> dR, )~ pdV =—SdT - pdV =dF,
T T

dH =T, dS,,~a dA +Vdp=—SdT+Vdp=dG .

This, of course, is caused by the absence of binding energy (ZAl.ai =A4,a,=0) in ideal gas
i=2
and ideal liquid due to the absence of electromagnetic interaction of their molecules and atoms.
Self-organization of hierarchically more complicated interactions and interconnections in matter is
in the tendency of Helmholtz and Gibbs free energies to their minimum.

Lower layers of matter, loaded by its upper layers form the extended system. The energy of
such extended system [40] that consists of the whole gravithermodynamically bonded matter is
indeed equivalent to enthalpy of a supercooled matter. Therefore, to obtain integral values of the
ordinary rest energy and the equivalent to it gravitational mass of any astronomical body,
integration must be performed using the spatial distribution of the density of the true mass
(equivalent in GR to the enthalpy and in RGTD to the Gibbs free energy of matter), and not at all
using the spatial distribution of the density of the "thermal" mass, which is equivalent only to the
thermodynamic internal energy of hot matter.

Moreover, as it is shown further, parameter a, (in contrast to 4, parameter) takes the same

value in the whole space filled by matter that gradually cools ((da,/0r),=0). And, therefore, Gibbs

free energy “behaves” as it is expected: it only changes in space along the radial coordinate r
together with the gravitational potential. And when Gibbs energy changes in time together with the
gravitational potential, it “behaves” like multiplicative component of enthalpy (like the energy of
extended system). This is quite logical and reflected in static equations of GR gravitational field.

The study of specific hidden intensive and extensive thermodynamic parameters (internal
variables) corresponding to specific properties of matter is really important. However, what is
considered here is not at all specific hidden parameters characterizing thermodynamic macrostates
of matter, but rather non-specific hidden parameters characterizing thermodynamic microstates of
matter, linking thermodynamic natural variables (pressure, molar volume, temperature, and entropy)
and which, unlike specific internal macroscopic variables, can instantly take any values with a
certain probability.

If during the inertial motion of matter the main role is played by conserving Lagrangian of its
ordinary rest energy and Hamiltonian of its inert free energy, then during the quasi-equilibrium
(quasi-uniform) motion of matter that gradually cools the main role is played by gradually
decreasing Lagrangians of its ordinary rest energy W, (identical to the multiplicative component of
Gibbs free energy Gy) and of multiplicative component of its thermodynamic internal energy [41,
42]. And therefore, according to the Lagrangian construction' of the energy-momentum tensor of

matter that gradually cools, not only the parameter b =v’c > of the gravitational field equations,

2 of the radial dimensions of the matter are hidden

but also the relativistic shrinkage I, =(1-v.v,?)
thermodynamic parameters. Namely, for the non-rigid FR which is comoving (b, = bT">) with the

gas that gradually cools, we will have the following gravitational field equations (which correspond
not to the metric space-time continuum (STC), but to the inseparable from matter its own physical

! Obviously, instead of the Hamiltonian construction, the hidden Lagrangian construction of the energy-momentum
tensor of matter should be used in the comoving with expanding Universe frame of references of spatial coordinates and
time (CFREU). After all, the evolutionary self-contraction of matter in it can be caused by the evolutionary decrease of
the coordinate velocity of light in it, which is a hidden thermodynamic parameter of matter.

3



STC, in which there is no radial motion of the molecules of matter, and time is counted by the
clocks comoving with it):

b /abr—r?(1-1/a)+ A=x(p—ST/V)=(kTpy /NBT,V )R, —S) = kT Rys / bV
a.la’r+r7?(1=1/a,) = A=x(u,c* - p) = K(tigye® — poo) NPT, =g /\[B,V,
(Inab,) /ar=xGy |V =Us/V+p—STIV)=(k/NbT, V) Ugy + TooRys) = kGoq /+[b.V
2 Uy = (Megc? = pooV) = Ugafb, = (U =U,,v,T,, / c = const(r),
Gy = GO\/bT =(G,-U, vl /c=const(r), S =const(r)?, R, = pV /T =const(r),

Ry =R, —S=const(r), Ty =TT, v,/ c=const(r,t), A, =TS/R, =TS/ pV = const(?).

Moreover, the thermodynamic processes in matter confront the intranuclear evolutionary and
gravitational processes in it. While in mechanics the main role is played by the inert free energy
H=E =m,,c’T, =mycv,I’, (equivalent to inertial mass m,, = myv,I, /c), in thermodynamics the

g2 2 2r2 2
where: bc - brm - vl ¢ 1_‘m - vlcc

main role is given not only to the internal energy U, but also enthalpy and Gibbs free energy

G=G,+U,_, =Gy /v, +U, =L +U_, the main part of which is an ordinary rest energy
Wy=Gy=U+pV—-pS-U, =L, =moc* /T, =myc®/vL, =Wy /,b, (equivalent to gravitational

mass m,, =mgc/v,I,) of matter that gradually cools. Here: U,, =U, -U, = const(r) >0 is spatially

homogeneous additive compensation of multiplicative representation Uy of internal energy U of
matter and, consequently, does not depend on the strength of gravitational field.
Therefore, in relativistic gravithermodynamics (RGTD) [41, 42] the frequency of intranuclear

interaction f; =qyNpr =qyNy /U, =n v /c=v, /v, . <1, corresponds to inversely
proportional to it frequency of electromagnetic interaction of matter molecules:
Jr=xuJ6=quN, =, [ON, =y, c/v, =V, oC/Vie = X, Vieser | Vie 2V, (foer =1,
f1r =1 when conditionally ¥,, = ¥,.0 =1).

This frequency is changing together with the change of velocity of light v, =cq,,<v, in matter
(that corresponds to radiation refractive index n, at the wavelength of maximum of energy of
thermal radiation) and with the change of internal scale factor’ N,=dl/dI<l of matter [41 — 46].

Here: l//mO = Zm /nm = valc/cr /c = valcrrmcr /c > l//m = V/mO /Fm = Zm /nmrm = valcrrmcr /Crm >

n,=clv,,=cll,, v, and X, = X.o are the constants of matter that cools to the limit

/er mcer

(X mo » ¥ o) and of matter that gradually cools ( ¥,, , ¥ ,, )’, which is not identical for different
matters and for their various phase or aggregate states and not dependent both on strength of

? Therefore, entropy is spatially homogeneous not only in a maximally cooled matter, but also in a gradually cooling
matter that has a non-rigid FR.

* It is obvious, the every matter forms in gravitational field its own thermodynamic STC, the curvature of which
partially compensates the curvature of STC of the whole gravithermodynamically bonded matter.

* These constants unambiguously correspond only to the homogeneous matter of not layered astronomical body that
does not possesses any matter outside its borders. In any other case it is only gaugely changed since due to
logarithmicity of gravitational potential (that is formed based on correspondent thermodynamic potential) it does not
directly influence the strength of gravitational field. Changes of the strength of gravitational field in it take place under
the influence of other matters on the formation of its spatially inhomogeneous thermodynamic state [4]1 — 46]. When
there is a violation of thermodynamic equilibrium with environment they can substantially influence on the magnitude
of limit velocity of individual motion of matter and, thus, on the magnitude of ordinary internal energy of matter and
equivalent to it gravitational mass. So, for example, in spite of the increasing of thermal energy of matter during its
heating its ordinary internal energy and, therefore, gravitational mass are ostensibly decreasing [47 — 49]. And this
decrease in the gravitational mass of heated bodies is due to its equivalence not to thermodynamic internal (free
thermal) energy at all, but actually to multiplicative component of Gibbs free energy.
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gravitational field and on matter thermodynamic parameters; v, and v,, are maximum possible
(limit) velocities of matter individual (separate) motion (which are equivalent to the pseudo-vacuum
coordinate velocities of light of GR) in any point and on the phase boundary of the same matter (or
on the boundary of different matters) correspondingly; v,, = v,I', > v, and v,.,, =v,T,.
are the limit velocity of individual (separate) motion of matter that gradually cools in the comoving
with it the non-rigid FR; T, 1is the Lorentz shrinkage of dimensions of matter (that moves in the
process of quasi-equilibrium cooling down) on the phase boundary of the same matter or with
another matter; &, is minimal possible distance of electromagnetic interaction between molecules
of certain matter or its critical value; ¢ is constant of the velocity of light.

In contrast to used in cosmology spatially inhomogeneous external scaling factor N, , which is

the cause of the curvature of matter intrinsic space, internal scaling factor N, takes nonsimilar
values for different matters and depends on thermodynamic state of matter. This factor characterizes
the distinction between average statistic value of interaction distance o/ in the atoms of concrete
matter and the value of this distance &/, that corresponds to critical equilibrium values of internal

energy multiplicative component U, Gibbs free energy G

cr?’

temperature 7,

cr?

pressure p,. . And if
parameter ¢, =v, /c=1/n,<1 characterizes the difference of real velocity of electromagnetic

interaction propagation in matter from the constant of velocity of light ¢, then N, is responsible for
compensation of the influence of increase of propagation velocity of electromagnetic wave on the
frequency of electromagnetic interaction f, of matter microobjects. If for gases and simplest
liquids the dependencies of instantaneous values of their thermodynamic parameters and potentials
on ¢q,, and N, =0,/Ny, =0,/ N, (o, =const(r)) allow to separate these variables, then
instantaneous value of their Gibbs free energy (that corresponds to their instantaneous
thermodynamic microstates) can be expressed via these two parameters and via their function R, in
the following way:

G(q,sN s R)=U (@3N 1Ry )=S(q,0sN s ROT (G N RV (N (G N, -

2. Multiplicative representation of thermodynamic parameters and potentials

with additive compensation that is invariant in space

Methods of thermodynamics allow us to analyze equilibrium states of matter even when there is no
analytic dependence of thermal energy of matter on its thermodynamic parameters. In order to
identify some features, let us consider the simplest analytical dependencies for gases and simple
liquids. According to them the instantaneous values of main thermodynamic parameters and
potentials can be represented in the following way [41, 42, 46]:
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where: U, =(f")UC,, , H,y=p,U,, éozﬂGUO , F’TO are multiplicatively dependent on ¢, =1/n,,
and N, components of instantaneous values of internal energy, enthalpy, Gibbs free energy and
Helmholtz free energy of instantaneous Gibbs microstate of matter correspondingly;

ap R
. d—z .[A da= .[A da,= j(T S/R,)dR,>0 is instantancous value of realized via negative feedback
=2ay ap0 Ryg

partial additive compensation of multiplicative representation of thermodynamic potentials of
microstate of matter (a multiplicative decrease in its free energies over time);

_R —pV/T and A =TS/ R =T2S/pV are respectively, extensive and intensive resulting
thermodynamlc parameters of the real gas;

(S)=In(gy, N)=In(f N, (D) =g, "N;™ =gy ;7 = £, 5N = (T o) 7 exp(S TRy,
(P) = gk N M = glhom plem _ etk prmetk _ (1, /cl//mo)_ﬂH/ﬂpV eXp(—g/RT) ’

(TY= (YN =quN, = f, =2,/ fo =w,c/v., =y, oc/T,v, =w,b"?/T, are normalized values
of thermodynamic parameters (entropy, molar volume, pressure and temperature) of Gibbs
microstates of matter;
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p,(pg.,a)=np, =const(r), p,=n, p, #const(r), while: n=const(r) and n, # const(r) are
the hidden variables that are the indicatorsi of the magnitudes of instantaneous microfluctuations of
values of pressure and molar volume when pV =const and during not absolutely rigid retention of
occupied by gas constant volume in the intrinsic space of matter and in Euclidean space
correspondingly [50]; k =const(7), 1 =const(r), m =const(7) are spatially homogeneous hidden
variables that are indicators of the influence of parameters ¢, =1/n, and N, =0,/ N,, on the
parameters of thermodynamic microstates of latently coherent matter’.

Variables k, 1 , m and n characterize instantaneous collective microstates of the whole
gravithermodynamically bonded matter and similarly to the wave functions of quantum mechanics
can take with certain probability any arbitrary instantaneous values. The probability that Gibbs
microstate of matter have instantaneous energy, the corresponding certain composition of values of
these variables, obviously, is represented by canonic Gibbs distribution. The concrete mathematical
expectations & (R,), [ (R,), m(R,), #(R,), i, (R,,a) of those variables (that depend on the
parameter R, ) correspond to parameters of a thermodynamic macrostate of matter. It is exactly the
dependence of the mathematical expectation 7, (R,,a)’ of the hidden parameter n, also on the
index of curvature a of the intrinsic space of matter that is responsible for its curvature.

Normalized values of thermodynamic parameters of instantaneous microstates of matter are
mutually related via the following dependencies:

($)=1lng, +InN, _111{ "’"10] (1—1)1{}3;}:?111(?) ?Vl( )_IH(T) Py V)= gﬁ In(7) + h;)fp)

mvl ST ST ST ST ST ST

In(7) =Ing,, +In N, = ln(“”"“’ j = ‘;ST ($)+ [;"V In(p) = By (S) - B,, In(V) =In(p) +In(V), (1)

mVi )id )id
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v, H H pV )24

m

In(p) = —k+ ! Ing,, +m+1)InN, = (m+ ’I)ln(c"y’”O j + km-—1 Inn, =
k WV k
B A N IBST . IBH A - A
=P (S)=ByIn(V)= ()4 In(T)=In(T)—In(V) . (3)

rv )24
As it was expected, all instantaneous thermodynamic potentials reach their minimum
independently both on the values of variables k, 1 , m, n, and on the value of spatial gas-related

(liquid-related) parameter ET:

(aﬁj 0 (aﬁj 0 (aﬁj 0 (aé} 0
OR; )5, ’ OR; )s ’ OR; ); ; ’ R ), .

And, moreover, the change in space of available thermodynamic parameters of matter that
gradually cools is inevitably accompanied by the change of its hidden thermodynamic parameters
I’ and v,:

> It is possible that latent coherence of matter is brought on (together with the new moment of its proper time) by the
next turn of spiral wave of space-time modulation of dielectric and magnetic permeabilities of physical vacuum [43,
51].

% Differential equations of the gravitational field specify only the radial gradients of the parameters a and b, and not
their absolute values. Therefore, at the same point in space, the values of not only the real velocity of radiation

propagation v _ , but also of the parameter b = v ,Zc ~2 may differ for different substances that border each other in the

same space. But the value of the parameter a is taken to be the same for them both in GR and in RGTD. However, the
possibility of its change together with the change in pressure in the gas cylinder is not excluded.
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(20) ) A ) (222

or ), or ), or ), or ), or ),

() () o) -2 2
or ) or ), or ), or ), or ),

o {22) o) (2) <222
¢ or ) or ), or ), or ), or ),

where: Or is the increment of metric radial distance.

And the bigger the distance from matter to the gravitational attraction center the smaller is its
internal energy. That is why in contrast to inert free energy (which is the greater the greater the
distance from the substance to the gravitational attraction center) the thermal energy behaves like a
negative mass. And this is confirmed by numerous investigations of the influence of heating of
matter on its weight [47 — 49].

Precisely the condition of spatial homogeneity of the compressibility coefficient of RGTD-
bonded matter Z(¢) = R,(¢)/ R, = const(r)’ determines the spatial distribution of the set of main

thermodynamic parameters of this matter that gradually cools.

Of course, every matter has its values of gravitational potentials, since the common for the
whole RGTD-bonded matter gravitational field forms only its gradients in the space. However, in
order to make all thermodynamic parameters of all individual thermodynamic STC of these matters
conformed with the parameters @ and b of Schwarzschild solution of common for them gravitational
field the appropriate conditions should be fulfilled.

3. Multiplicative representation of thermodynamic parameters and potentials

with additive compensation that is invariant in time
Since parameter:

TS UCVESTqMNI ln(qLNI) UCVESTC ‘//mO [ln l//mO — ln 1—‘m _ ln(vl /C) B (1 — 7l) ln(vcm /C)]
RT = —= = * RTO
A A AT,

7o P

expressed not only via constants (including also 4 =const(f) which characterizes the quasi-

equilibrium of the process of cooling down of matter throughout the whole time), but also via
velocity of the light in matter v, , limit velocity v, of individual (separate) motion and Lorentz

shrinkage of dimensions I', #const(r) (v, =v,,/I, #const(r)) of the matter that moves in the
process of quasi-equilibriumly cooling down, then only via them we can in temporal form (via 4,)

or in spatial form (via a, =R, ) express instantaneous values of all main thermodynamic parameters
and potentials of RGTD-bonded matter:
ApﬂpV ApﬂpV

T = = —
IBST(llon + lnN[) IBST[lnl//mO _lnrm _ln(vl /C)+ (l _1)1n(vcm /C)]

. B
— UcrﬂquMNI — UcrIBpVCl//mO _ pV — UC"’BPV U i " —
R, R,L,v, R, R,

= exp
1214 R,

7 This is nothing more than the expression of the tendency to align the magnitudes of any intensive parameters of
matters in the whole filled with them space. Only such main (field) intensive thermodynamic parameters as temperature
and pressure in principle cannot be (or become) absolutely spatially homogenous in quasi-equilibriumly cooling down
matter. Some other the fielded intensive thermodynamic parameters, which are related to the possibility of appearance
of not only gravitational but also magnetic and electric fields in the RGTD-bonded matter, also cannot become
absolutely spatially homogenous.
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aA g,ﬁ aAp - aA ]V',V ye) f,ﬁ

P S.p P
v.=I' v, is the limit velocity of individual (separate) motion of matter that gradually cools in

comoving with it FR (in its own space-time continuum (STC), in which the radial motion of
A A

Y Y
molecules of matter that gradually cools is absent); U, = J R,dA = J (ST/A,)dA,>0 is instantaneous
Y/ Y
0 00

value of partial additive compensation of multiplicative representation of thermodynamic potentials
of matter microstate (multiplicative increase of bound energy as we approach the gravitational

attraction center); G is the instantaneous value of Gibbs energy G (that is similar to the
Lagrangian, since it constantly tends to its minimum too).
As we can see, due to A4 (r)=const() when homogeneous matter is quasi-equilibrium cooling

down the gravitational changes in time of its Gibbs free energy and Helmholtz free energy take
place similarly to the changes in space of multiplicative component of internal energy U, and

enthalpy H,, correspondingly®. Precisely, if:

(a—Uj =—<U0+U:;,>{1+ P H(alnﬁj +[81“FWH+
or ), 1+ Bolin(cy,, /v)+(T =Dinn, |[[[Lar ), " ar ),

14 B [in(cy, o /T v)+(I —t)lnn |\ of

r

() (2] A -l ) )]

ot ). ot ), ot ), ot , ot r ot ),

(a_(jj B _S(G_Tj " V(a_]zj =—Hp, ‘ lnj}lc =—-Hp, o lnF =+ d 1nAVI )
ot ), ot ), ot ), ot , ot , ot .

where: 0f is the increment of metric time of matter that gradually cools in a comoving with it FR.

Moreover, the multiplicative component of only the Gibbs free energy is proportional to the
absolute temperature of matter not only in space but also in time. It is smaller the lower the
temperature and, consequently, the higher the limit velocity v;. of individual motion of the matter
molecules (and the corresponding coordinate pseudo-vacuum velocity of light v, of GR).

The equations of thermodynamic state of gas for a predominantly hydrogen Universe would be
as follows:

‘U=Uy+4,R,, "F=U, YHy,=Hp +A,R,, A, =T*S/pV =const(t),

e ~
B.R, T B.pV  B,ST? ~ B S
UG:UHTO:IBHN T :ﬂzp :ﬂNH U, B, Np H exp 'fpV ’
IBpV ﬂpV ﬂpVAp ﬂprl IBHRT
d'U =TdS — pdV + 4,dR,, d'F =TdS - pdV, d'H, =TdS+Vdp+ 4,dR,, d"G =TdS +Vdp
In the process of free fall of matter in gravitational field the Helmholtz and Gibbs
thermodynamic free energies, as well as the Hamiltonian of inert free energy of matter, are

conserved not only due to the presence of weightlessness in its FR (v, = v,I, = const(¢) ), but also

due to the total compensation of the influence of gravitation on its thermodynamic state by the
motion. However it is possible only in hypothetical absolutely empty space. But when there is a

¥ The authors of GR, obviously, intuitively understood this fact. That is why GR is the genial creation, despite the fact
that it ignores the principal invariance of thermodynamic parameters and potentials relatively to space-time
transformations.
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resistance to motion these energies will be gradually increasing due to the matter cannot reach the
required for their conservation value I', and thus also due to accommodation of the matter of
falling body to the new thermodynamic state of matter of the environment.

Before the appearance of spatial inhomogeneity of limit velocity of individual motion of matter
v, the only thing that could interfere its distancing from the future gravitational attraction center
(due to tending of its Gibbs thermodynamic energy to its minimum) was the electromagnetic
interaction of its molecules. That is why the hypothetic ideal gas and ideal liquid in principle cannot
create their gravitational field.

As we see, here we have a dependency of spatial distribution of intrinsic values of these
thermodynamic parameters and potentials (not the dependency of spatial distribution of other their

values observed by other clocks and by other length standards) on v, (and, so, alsoon I, and v,).
It would be non-logical if I', and v, would not influence on spatial distribution of the set of

intrinsic values of main thermodynamic parameters of matter. So this does not contradict to
invariance of thermodynamic parameters and potentials of matter relatively to the space-time
transformations [43]. On the contrary, it only confirms the fact that limit velocity v, of individual

motion of defined substance, as well as I', , is the internal hidden RGTD-parameter of substance
and not the non-dependent on certain RGTD-state of external gravitational parameter of substance.

4. Physical and other thermodynamic characteristics of matter
Obviously, the stability of magnitude of extensive parameter A =T ’S/pV takes place in the

process of quasi-equilibrium cooling down of matter. If we experimentally find its averaged value
for researched matter at the beginning of the research or if we measure the increments of

thermodynamic parameters:
olnS\ (Olnp N oV (dInT
or ) o ) \a ) o )’
/7’ ~

U, 'B '7 Py UanpV P Ap ﬂpV_ )24 '7 P 7] 1414 2_
T Lplﬁ,w "I’(Tﬂ T {plve"p(rﬂ 24" Fn *ﬂﬂln(vc,,j )

AR
e T:R{ : h{ KT J+ln(%fVﬂ R |:8+~ (InR, +1nT)+1nV}
ﬂpV IBpV cr ﬂ

pV

ZRTHL Nl Jn[ J { J] g+{l+~LJ(lnRT+lnT)ln p]=
ﬂ ﬁpV prl L ﬁpV
=R Hl : jl [p,V\ 1 { d J R{Ev{l : Nl Jan . lilp]
ﬂpV Ucr) ﬂpV ﬂprl A ﬁpV ﬁpV

where: 5=1nﬁ,—(1+1/ﬂ~py)ln(mooc3/vlc,_)—(lnﬁp,,)/ﬁp[,=const(At) and ,Ep,, =const(Af) are

mathematical expectations of the values of functions of arbitrary changing hidden variables k, 1 ,
m, n, which are the strictly constant magnitudes during the whole not very long time of the
existence of any Gibbs thermodynamic microstate.

we can determine its entropy:

However, if we know & and ﬁp,, and if we determine only the molar volume of gas that
gradually cools and the pressure in it, then we can determine only its bond energy:

W}md:ST:Vp{E{I - jan Jnp } . (6)
ﬁ y24
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In order to determine the entropy and, thus, the value of parameter 4, we should additionally

measure the temperature of the gas. It is obvious that parameters £ and Ep,, of the equation of the

state of gas (6) can be determined also experimentally in the process of controlled change of its
bond energy as well as of all its thermodynamic parameters.

The research of thermodynamic properties of matter should be performed only in its equilibrium
states or using the dependencies of its thermodynamic potentials on thermodynamic parameters that
take into account the variability of parameter R, in the process of this research ( R,#const(?)). In
order to determine both the thermal expansion coefficient ¢ and pressure ¥ and the elastic
modulus K, of gas or liquid it is enough to know only the thermal equation of the state (i.e. the gas
compressibility coefficient Z = R, /R, , which 1is determined by the parameter

R, = pV I R,):

OR OR
azi(a—Vj :L R +T r , 7:L(a_pj :L R, -T r ,
v,\or ), V,p or ), po\oT ), pJV oT ),
R, T R

Krz_Vo(a_pj =T T 0 r|
ov), V, ov ),

In order to determine their thermal capacity when volume and pressure are invariant’ and, thus,

all their thermodynamic potentials we should know not only R, and critical phasic values of

pressure p,. and of internal energy multiplicative component U, =myc’/v,., but also the

mathematical expectation /3 ,» of the value of hidden variable f,, = pViU,:
I B,,S
C,= 6U 1 R, +T 1+'B R,
ﬂ , T ),
R, T ~
ﬂpv{ T |: ” ﬂpVUcr pV prl

—

T[ L R, +T 1+1n[ NRTT J
ﬁ ﬂpVUC
1+ 8 | 7
cp=T(a—S =(6—UJ +RT+T[8RTJ Bl g | 1S
or), \or ), or ), B,y I (l+ﬁpV)R
1+ 8
C,-C,=R.+T Nﬂ”V+S (aRJ %+i aRTj , U= j%d
ﬁpV or ﬁpV RT or v ﬂpV R

Based on thermodynamic dependencies of thermal capacities when volume and pressure are
invariant we can determine the mathematical expectation of dependencies of these functions on

individual parameters R, and &, and, consequently, on any pair of main thermodynamic

? Heat capacity when pressure is invariant is determined not by internal energy of the matter itself, but by equivalent to
its enthalpy the energy of extended system that consists of this matter and the load that supports the needed pressure.
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The following correspond to the thermal Van der Waals equation [1] of the state of real gases:

rP V_ R, _R,V _a, R [ 14 _9} P
" T (+a,/pV>(-b,/V) V-b, TV "\ V-b, " | R, TV’
VZ[RUTdT _(V_bm)dp] OR,\ _a, RUTG
L ; oT T
pVi=a (1-2b V) , TV

(@) (8V) _a,(=2b, V)TV )+Ryy—R, R AR, [14+601-2b,/V]-R,}
or or) T T[1 a,(-2b,V)(pV*)| ~ TIR—R,,00-2b,/V)] ~

~ RAR,[R,,(1-20 b, 1V )R, ]+ R*,6*(1-2b,, 1V )}
IBPV - RT (CV +RUT ‘9){RUT [1+‘9(1_2bm / V)]_RT }_RUT H(Cp _RT)[RT _RUT ‘9(1_2bm / V)] ’

where: a, and b, are individual constants of certain matter.

According to this we receive the simple expression for the entropy of hypothetical ideal gas:

S=C,,In (%OT j+RUT1 (%’O%VV):SW+C,,Oln(le+RUT1n(VV j S +CV01n(T j+RUT1nU;k j

where: S_,=(C,,+R,;)In(C, T, /U,), C,=R,/ ﬁpy; V.=R,T. /p, and T, are critical phasic values
of molar volume and temperature of ideal gas; ¥, and 7, are their another arbitrary values.

The following expressions correspond to more precise Dieterici [2] first thermal equation that uses
an exponent with the same parameter 6=a, /(R TV):

t
)2

_RUT(1+9)exp(—0)dT—(V—bm)dp

/VeXp( 9, r= p—a_V 2exp(-0) ’
j R,/ (1+20)exp(-0)-R, RT[RUT(1+29)exp(—9)—RT]_RT‘P
Tl-a exp(—e)/(pVZ)] T[R,~R,0exp(-0)] T °

T

( Cp:(l+‘P)%+‘PS ,
C,~C,=[+P)1+V/B,,)~(1+0)/ B,, 1+-(¥-0)S
5 (\P_Q)RT _ R, (l+9)[RUT (1+0)exp (_9)_RT]

P =0C,~0C, +00+ )R, R, [1+26)C, +0°C, +6(1+O)R, kxp(-B)-R, (C, +6C )
Obviously, experimentally found heat capacities of gases can be represented as functions of only
R, and @ parameters.

Hidden variables [, and f,, are invariant magnitudes in any moment of time that

corresponds to the certain Gibbs collective microstate of the whole RGTD-bonded matter. And,
thus, their derivatives by any thermodynamic parameter are equal to zero. The same can be told

regarding mathematical expectations of those hidden variables ﬂST and ﬂ v » despite the

dependence of their values on other thermodynamic parameters of matter.

Conclusion
Now we know for sure about the four hidden thermodynamic parameters (k, 1 , m, and n) and
functions on them (B,,, B, B> Byr» Bs» Ber)» and functions of the explicit thermodynamic

parameters (A,, a,=R,,Z, U,, U,,, C,, C, ,K,, a, yand etc), as well as critical (U,,,

S..p., T, )and spatlally homogeneous (T, Uy, Hy, Gy ) thermodynamic parameters. That is

why it is now possible to experimentally determine at the points of phase transitions the critical
values, and at the control points the standard values of the mathematical expectations of the hidden
parameters, as well as of the corresponding explicit thermodynamic parameters. And on the basis of
all this it is possible to obtain exact equations of thermodynamic state of real gases and liquids

15



without using corrections. And this is facilitated by the spatial homogeneity of the hidden
thermodynamic parameters, which correspond to the spatially inhomogeneous states of real matter.
Of course, this will not deny the expediency of using also approximate equations of thermodynamic
state of matter based on the use of corrections.

Enthalpy, which consists of the Lagrangian of its own multiplicative component and additive
compensation of its multiplicative representation, is de facto the total energy of matter since it
includes even the released thermal energy and the released kinetic energy of its motion. Enthalpy of
matter (as well as Gibbs free energy, which multiplicative component is identical to the ordinary
rest energy of matter and is equivalent to its gravitational mass) is equal in all FRs of bodies that
move inertially relatively to it. And exactly this is the guarantee of Lorentz-invariance of all
thermodynamic potentials and parameters of matter. Since matter motion is accompanied by the all-
sided conformally-gaugely self-contraction of its size in background Euclidean space of the
Universe the rate of the intrinsic time of inertially moving body is not dilated but, quite the
contrary, remains invariant, despite the presence of gravitational decreasing of the rate of intrinsic
time for nearby static objects. De facto the motion of the matter as well as its gravitational self-
contraction in background Euclidean space of the Universe leads to its advance over unobservable
in people’s world evolutionary self-contraction of the conventionally motionless matter in the
Universe. That is why the release of kinetic energy is always accompanied by the decreasing of
limit velocity of matter individual (separate) motion (that is equivalent to coordinate velocity of
light in GR) and the decreasing of its inert free energy.

The ordinary rest energy of matter is bonded in a different ways in different physical processes.
That is why we have various free energies in different processes. Both the change of the inert free
energy of matter (caused by its inertial motion) and its evolutionary decrease in CFREU do not
directly influence the thermodynamic parameters of matter that are changed only in thermodynamic
processes. That is why it is fundamentally unobservable in intrinsic FRs of matter in the similar
way as evolutionary and caused by motion reduction of molar volume of matter is unobservable in
comoving with expanding Universe FR. The gravitational reduction of molar volume of matter
when approaching the gravitational attraction center is also unobservable directly in intrinsic FRs
of matter. However, we still can say about its presence in Euclidean space of CFREU due to the
presence of gravitational curvature of intrinsic space of matter.

The hidden thermodynamic parameters discovered here (which, similarly to wave functions,
can take on any values with a certain probability) confirmed Gibbs's idea of the presence of a
multitude of instantaneous thermodynamic microstates in matter that is in an invariable quasi-
equilibrial state. The another important thing is the substantiation of the fact that the limit velocity
of individual (separate) motion of matter and the indicators of the relativistic-gravitational decrease
in the molar volume of matter in the background Euclidean space do belong to the hidden internal
thermodynamic parameters [50]. Therefore, an external relativistic interpretation of
thermodynamics is not needed. And therefore, all thermodynamic parameters and potentials are
invariant both gravitationally and relativistically. After all, all gravitational and relativistic
influences on them are already contained in their formation as hidden parameters.

The acceptance of the fact of existence of an extensive parameter (that is spatially
homogeneous in the gravitational field), characterizing the compressibility of gases, and a spatially
inhomogeneous intensive thermodynamic parameter (that is invariant during the gas leisurely
cooling process) allows us to consider the gravitational field as a consequence of a spatially
inhomogeneous gravithermodynamic state of both any continuous matter and arbitrarily rarefied
gas-dust matter of the cosmic vacuum.

The proved here equivalence of the Hamiltonian of the inert free energy to the inertial mass of
matter, and the equivalence of Lagrangian of the ordinary rest energy (and the multiplicative
component of the Gibbs free energy identical to it) of matter to a much larger gravitational mass
[41, 42] have solved the problem of the shortage in baryonic mass in distant galaxies of the
Universe. And it is this, together with the logarithmic gravitational potential [52, 53], that allows us
to abandon the need for non-baryonic dark matter in the Universe.
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