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Abstract  

For the collective gravithermodynamic Gibbs microstates the connection between 
all thermodynamic potentials and parameters of matter have been found. This 
connection is realized with the help of four hidden wave functions that can take 
arbitrary values with certain probability. The possibility of obtaining the known 
equations of thermodynamic state of real gases is shown based on the use of both 
their the limit velocities of individual (separate) motion and the mathematical 
expectations precisely of these four nonspecific hidden parameters (wave 
functions) and functions of them. It is substantiated that in a quasi-equilibrium 
state, a real gas has spatial homogeneity not only of its entropy but also of the 
resulting extensive parameter (an indicator the compressibility coefficient). But 
the radial values of resulting intensive parameter (an indicator of hierarchical 
complexity and of quasi-equilibrium of cooling down) of a real gas are invariant 
in time. 

Keywords: thermodynamics, gravity, gravitational field, inert free energy, Gibbs 
microstate, hidden variables, wave functions. 

 

1. Introduction 
Equations of state of matter are a necessary complement to the laws of thermodynamics. They allow 
the application of the laws of thermodynamics to specific substances and systems, since the laws of 
thermodynamics by themselves do not provide complete information about the state of the system. 
Equations of state cannot be derived from the laws of thermodynamics alone. They are obtained 
experimentally or theoretically, using ideas about the structure of matter, for example, methods of 
statistical physics.  

The most famous equations of state for real gases are the generalized Clapeyron–Mendeleev 
equation, the van der Waals virial equation (1873) [1], the Dieterici equation (1898) [2], the 
Berthelot equation (1900–7) [3], the Kamerlingh-Onnes virial equation (1901), the Beattie–
Bridgeman equation (1927) [4, 5], the Benedict–Webb–Rubin equation (1940–42) [6 – 9], the 
Redlich–Kwong equation (1949) [10], the Soave–Redlich–Kwong equation (1972) [11, 12], the 
Peng-Robinson EOS (1976) [13], etc. [14 – 35]. 

Studies of the spatially uniform compressibility coefficient of gases and liquids are important 
[21, 23, 27, 36 – 39]. It may also be important for the analysis of the cooling process of the hot 
Universe (when the Universe was uniformly filled mainly with hydrogen) to find out the value of 
the time-invariant intensive thermodynamic parameter pVSTA /2=ρ . The most popular, practical, 

and perfect are the van der Waals virial equation [1, 15 – 17, 24] and the Benedict–Webb–Rubin 



 2 

equation of state [6 – 9, 18, 20, 25 – 35]. But they are also purely empirical and artificial. After all, 
they are based on the use of only coefficients and corrections, and not thermodynamic nonspecific 
hidden parameters, which are wave functions capable of taking any values with a certain 
probability. Therefore, these equations of the thermodynamic state of matter do not allow us to 
obtain a set of multitude Gibbs microstates for matter. Moreover, they do not allow us to obtain 
equations of spatially inhomogeneous quasi-equilibrium thermodynamic states of astronomical gas 
clusters that gradually cool down. It is to the solution of these important and urgent problems that 
the proposed in the article results of careful theoretical research of the author are devoted. 

Internal energy U of real gases, liquids and solid matters depends on many pairs of their 
intensive iA  and extensive ia  thermodynamic specific hidden parameters. And there are a very 

large number of those parameters in solid substances, and therefore the internal energy in these 
substances is very significant. Those facts prompt us (in the general relativity (GR)) to falsely 

identify the inert free energy cvcvmE 000 ˆˆ =  of matter with the multiplicative component 

cvvcUU /000 =  of its thermodynamic internal energy due to the use (in the GR) of the eigenvalue of 

the hybrid enthalpy )(/ˆˆˆ rcvHVpcmH cvTT const==+= 00000
2

0000  that is invariant along the radial 

coordinate r (in the gravitational quantum time of the matter [41]). Similarly, in relativistic 
gravithermodynamics (RGTD), the ordinary rest energy 0

3
000 GvcmW l ≡= / of matter is identified 

with the multiplicative component G0 of the Gibbs thermodynamic free energy G [41]. Here: 00m̂  

and 00m  are the eigenvalues of the mass of matter that is not under pressure and the true mass of 

the matter, respectively; )(/ rcpVvVp cv const==0000 ; )(rU const=00 , )(rp const≠00  and 

)(rV const≠00  are eigenvalues of the multiplicative component U0 of the internal energy U, of the 

pressure p and of the molar volume V of the matter, respectively; vcv and vl are the coordinate 
pseudo-vacuum velocity of light of the GR and the equivalent (but not identical) limit velocity of 
individual (separate) motion of matter (which at the same point in space may be different in the 
RGTD for different matters) respectively. 

However, what is considered here are not at all specific hidden parameters characterizing 
thermodynamic macrostates of matter, but rather non-specific hidden variables that are mutually 
related to thermodynamic natural parameters (pressure, molar volume, temperature, and entropy). 
In addition, non-specific hidden variables that form Gibbs microstates, unlike specific internal 
macroscopic parameters, can instantly take any values with a certain probability.  

Internal energy can also be shown as a sum of internal energy of hypothetic ideal gas (liquid) 

idU  and output of multiplication of resulting intensive pVSTtRTSrA T /)(/)( 2==ρ  and 

extensive TpVRta T /)( =≡ρ  thermodynamic parameters: 

ρρ aAUaAUU id

n

i

iiid +=+= ∑
=2

, 

pdVTdSpdVdaAdSTdU idid −=−+= ρρ , 

where: UTTid RTRT /= , TUTid RSRS /= , TSSTaA idid ==ρρ . For gases: i

iUTi VBRa −= 1 , iB  is virial 

coefficients that depend on both temperature and individual gas properties [40], while UTR  is 

universal gas constant and )(/)( tTpVrRT const==  is thermodynamic parameter of gas, that 

determines the compressibility coefficient UTT RRZ /=  of the gas and does not vary in space at 

conditions of quasi-equilibrium cooling down of gas (is the same on any radial distance r from the 
gravitational attraction center in the comoving to it frame of reference of spatial coordinates and 
time t (FR)). And exactly this invariability in space of )(tRT  is responsible for the fact that 
properties of real gases that gradually cools are close to properties of hypothetical ideal gas. 
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“Ideal” component idU  of internal energy is de facto identical to Helmholtz free energy TF , 

while “ideal” component TidH  of enthalpy is identical to the Gibbs free energy G: 

Tid FSTUAaUU =−=−= ρρ ,         GSTHAaHH TTTid =−=−= ρρ , 

TT

T

T

T

ididid dFpdVSdTpdVdR
R

TS
TdSSdTdR

R

TS
TdSpdVdAadSTdU =−−=−−+−−=−−= )()(ρρ , 

dGVdpSdTVdpdAadSTdH ididTid =+−=+−= ρρ . 

This, of course, is caused by the absence of binding energy ( 0
2

==∑
=

ρρ aAaA
n

i

ii ) in ideal gas 

and ideal liquid due to the absence of electromagnetic interaction of their molecules and atoms. 
Self-organization of hierarchically more complicated interactions and interconnections in matter is 
in the tendency of Helmholtz and Gibbs free energies to their minimum. 

Lower layers of matter, loaded by its upper layers form the extended system. The energy of 
such extended system [40] that consists of the whole gravithermodynamically bonded matter is 
indeed equivalent to enthalpy of a supercooled matter. Therefore, to obtain integral values of the 
ordinary rest energy and the equivalent to it gravitational mass of any astronomical body, 
integration must be performed using the spatial distribution of the density of the true mass 
(equivalent in GR to the enthalpy and in RGTD to the Gibbs free energy of matter), and not at all 
using the spatial distribution of the density of the "thermal" mass, which is equivalent only to the 
thermodynamic internal energy of hot matter. 

Moreover, as it is shown further, parameter ρa  (in contrast to ρA  parameter) takes the same 

value in the whole space filled by matter that gradually cools ( )0)/( =∂∂ traρ . And, therefore, Gibbs 

free energy “behaves” as it is expected: it only changes in space along the radial coordinate r 
together with the gravitational potential. And when Gibbs energy changes in time together with the 
gravitational potential, it “behaves” like multiplicative component of enthalpy (like the energy of 
extended system). This is quite logical and reflected in static equations of GR gravitational field. 

The study of specific hidden intensive and extensive thermodynamic parameters (internal 
variables) corresponding to specific properties of matter is really important. However, what is 
considered here is not at all specific hidden parameters characterizing thermodynamic macrostates 
of matter, but rather non-specific hidden parameters characterizing thermodynamic microstates of 
matter, linking thermodynamic natural variables (pressure, molar volume, temperature, and entropy) 
and which, unlike specific internal macroscopic variables, can instantly take any values with a 
certain probability. 

If during the inertial motion of matter the main role is played by conserving Lagrangian of its 
ordinary rest energy and Hamiltonian of its inert free energy, then during the quasi-equilibrium 
(quasi-uniform) motion of matter that gradually cools the main role is played by gradually 
decreasing Lagrangians of its ordinary rest energy W0 (identical to the multiplicative component of 
Gibbs free energy G0) and of multiplicative component of its thermodynamic internal energy [41, 
42]. And therefore, according to the Lagrangian construction1 of the energy-momentum tensor of 
matter that gradually cools, not only the parameter 22 −= cvb l  of the gravitational field equations, 

but also the relativistic shrinkage 2/122 )1( −−−=Γ lmm vv  of the radial dimensions of the matter are hidden 

thermodynamic parameters. Namely, for the non-rigid FR which is comoving ( 2
mс bb Γ= ) with the 

gas that gradually cools, we will have the following gravitational field equations (which correspond 
not to the metric space-time continuum (STC), but to the inseparable from matter its own physical 

                                                 
1 Obviously, instead of the Hamiltonian construction, the hidden Lagrangian construction of the energy-momentum 
tensor of matter should be used in the comoving with expanding Universe frame of references of spatial coordinates and 
time (CFREU). After all, the evolutionary self-contraction of matter in it can be caused by the evolutionary decrease of 
the coordinate velocity of light in it, which is a hidden thermodynamic parameter of matter. 
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STC, in which there is no radial motion of the molecules of matter, and time is counted by the 
clocks comoving with it):  

( ) VbRTSRVbTVSTparrbab cTSTmсссс /))(/()/(// 0000
2 11 κκκ =−Γ=−=Λ+−−′ −

, 

VbUbpcpcarraa cmgrccc //)()()/(/ 0000
2

00
222 11 κµκµκ =Γ−=−=Λ−−+′ −

, 

VbGRTUVbVSTpVUVGraba cTSmccc /))(/()//(//)(ln 000000000 κκκ =+Γ=−+==′ , 

where: 222222 −− =Γ=Γ= cvcvbb lcmlmc , )(/)()( rcvUUbUVpcmU mladc const=Γ−==−= 000
2

0000 , 

)(/)( rcvUGbGG mladTc const=Γ−== 000 , )(rS const= 2, )(/ rTpVRT const== , 

)(rSRR TTS const=−= , ),(/ trcvTT lm const=Γ=00 , )(// tpVSTRTSA T const=== 2
ρ . 

Moreover, the thermodynamic processes in matter confront the intranuclear evolutionary and 
gravitational processes in it. While in mechanics the main role is played by the inert free energy 

mlmin cvmcmE Γ=Γ=≡ 00
2

0H  (equivalent to inertial mass cvmm mlin /Γ= 00 ), in thermodynamics the 

main role is given not only to the internal energy U, but also enthalpy and Gibbs free energy 

admadmlad UUvGUGG +=+Γ=+= L/000 , the main part of which is an ordinary rest energy 

cmlmgrmad bWvcmcmUpSpVUGW ///L 00
3

00
2

000 =Γ=Γ=≡−−+=≡  (equivalent to gravitational 

mass mlgr vcmm Γ= /00 ) of matter that gradually cools. Here: 00 >=−= )(rUUU Tad const  is spatially 

homogeneous additive compensation of multiplicative representation U0 of internal energy U of 
matter and, consequently, does not depend on the strength of gravitational field.  

Therefore, in relativistic gravithermodynamics (RGTD) [41, 42] the frequency of intranuclear 

interaction mcrlclcmlmEENRENG vvcvNqNqf ηη ≤=Γ=Γ== ////  corresponds to inversely 

proportional to it frequency of electromagnetic interaction of matter molecules: 

mlccrlcmlcmlmIcmIMGmI vvvcvcNcvNqff ψχψψχ ≥====== ///)/(/ /0  ( 1=Gcrf , 

1=Icrf  when conditionally 10 == mm χχ ). 

This frequency is changing together with the change of velocity of light lMcm vcqv ≤=  in matter 

(that corresponds to radiation refractive index mn  at the wavelength of maximum of energy of 

thermal radiation) and with the change of internal scale factor3 1/ ≤= llN crI δδ  of matter [41 – 46]. 

Here: cvcv mcrlcrmcrlcmmmm /// / Γ=== χχηχψ 0 , mmcrlcrmmmmmmm cv ΓΓ=Γ=Γ= /// χηχψψ 0 , 

lcrmcrcrlcm vcvc Γ== // /η  and 0mm χχ =  are the constants of matter that cools to the limit 

( 0mχ , 0mψ ) and of matter that gradually cools ( mχ , mψ )4, which is not identical for different 

matters and for their various phase or aggregate states and not dependent both on strength of 

                                                 
2 Therefore, entropy is spatially homogeneous not only in a maximally cooled matter, but also in a gradually cooling 
matter that has a non-rigid FR. 
3 It is obvious, the every matter forms in gravitational field its own thermodynamic STC, the curvature of which 
partially compensates the curvature of STC of the whole gravithermodynamically bonded matter. 
4 These constants unambiguously correspond only to the homogeneous matter of not layered astronomical body that 
does not possesses any matter outside its borders. In any other case it is only gaugely changed since due to 
logarithmicity of gravitational potential (that is formed based on correspondent thermodynamic potential) it does not 
directly influence the strength of gravitational field. Changes of the strength of gravitational field in it take place under 
the influence of other matters on the formation of its spatially inhomogeneous thermodynamic state [41 – 46]. When 
there is a violation of thermodynamic equilibrium with environment they can substantially influence on the magnitude 
of limit velocity of individual motion of matter and, thus, on the magnitude of ordinary internal energy of matter and 
equivalent to it gravitational mass. So, for example, in spite of the increasing of thermal energy of matter during its 
heating its ordinary internal energy and, therefore, gravitational mass are ostensibly decreasing [47 – 49]. And this 
decrease in the gravitational mass of heated bodies is due to its equivalence not to thermodynamic internal (free 
thermal) energy at all, but actually to multiplicative component of Gibbs free energy. 
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gravitational field and on matter thermodynamic parameters; lv  and lcrv  are maximum possible 

(limit) velocities of matter individual (separate) motion (which are equivalent to the pseudo-vacuum 
coordinate velocities of light of GR) in any point and on the phase boundary of the same matter (or 
on the boundary of different matters) correspondingly; lmllc vvv >Γ=  and mcrlcrcrlc vv Γ=/  

are the limit velocity of individual (separate) motion of matter that gradually cools in the comoving 
with it the non-rigid FR; mcrΓ  is the Lorentz shrinkage of dimensions of matter (that moves in the 

process of quasi-equilibrium cooling down) on the phase boundary of the same matter or with 
another matter; crlδ  is minimal possible distance of electromagnetic interaction between molecules 

of certain matter or its critical value; c is constant of the velocity of light. 
In contrast to used in cosmology spatially inhomogeneous external scaling factor EN , which is 

the cause of the curvature of matter intrinsic space, internal scaling factor IN  takes nonsimilar 
values for different matters and depends on thermodynamic state of matter. This factor characterizes 
the distinction between average statistic value of interaction distance lδ  in the atoms of concrete 
matter and the value of this distance crlδ  that corresponds to critical equilibrium values of internal 

energy multiplicative component crU , Gibbs free energy crG , temperature crT , pressure crp . And if 

parameter 1/1/ <== mcmM ncvq  characterizes the difference of real velocity of electromagnetic 

interaction propagation in matter from the constant of velocity of light с, then IN  is responsible for 
compensation of the influence of increase of propagation velocity of electromagnetic wave on the 
frequency of electromagnetic interaction If  of matter microobjects. If for gases and simplest 
liquids the dependencies of instantaneous values of their thermodynamic parameters and potentials 
on Mq  and EmEmREmI NNN Γ== // σσ  ( )(rm const=σ ) allow to separate these variables, then 

instantaneous value of their Gibbs free energy (that corresponds to their instantaneous 
thermodynamic microstates) can be expressed via these two parameters and via their function TR  in 
the following way: 

),(),(),,(),,(),,(),,( IMIMTIMTIMTIMTIM NqpNqVRNqTRNqSRNqURNqG
((((((((((

+−= . 
 

2. Multiplicative representation of thermodynamic parameters and potentials 

with additive compensation that is invariant in space 
Methods of thermodynamics allow us to analyze equilibrium states of matter even when there is no 
analytic dependence of thermal energy of matter on its thermodynamic parameters. In order to 
identify some features, let us consider the simplest analytical dependencies for gases and simple 
liquids. According to them the instantaneous values of main thermodynamic parameters and 
potentials can be represented in the following way [41, 42, 46]: 
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)(n),( rpapp crlEl const== , )(n rpp crElE const≠= , while: )(n rconst=  and )(n rE const≠  are 

the hidden variables that are the indicatorsі of the magnitudes of instantaneous microfluctuations of 
values of pressure and molar volume when const=Vp

((
 and during not absolutely rigid retention of 

occupied by gas constant volume in the intrinsic space of matter and in Euclidean space 
correspondingly [50]; )(k rconst= , )(rconst=l , )(m rconst=  are spatially homogeneous hidden 

variables that are indicators of the influence of parameters mM nq /1=  and REmI NN /σ=  on the 

parameters of thermodynamic microstates of latently coherent matter5. 
Variables k, l , m and n characterize instantaneous collective microstates of the whole 

gravithermodynamically bonded matter and similarly to the wave functions of quantum mechanics 
can take with certain probability any arbitrary instantaneous values. The probability that Gibbs 
microstate of matter have instantaneous energy, the corresponding certain composition of values of 
these variables, obviously, is represented by canonic Gibbs distribution. The concrete mathematical 
expectations )(

~
TRk , )(

~
TRl , )(~

TRm , )(~
TRn , ),(~ aRn TE

 of those variables (that depend on the 
parameter 

TR ) correspond to parameters of a thermodynamic macrostate of matter. It is exactly the 
dependence of the mathematical expectation ),(~ aRn TE

6 of the hidden parameter nE also on the 
index of curvature a of the intrinsic space of matter that is responsible for its curvature. 

Normalized values of thermodynamic parameters of instantaneous microstates of matter are 
mutually related via the following dependencies: 
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As it was expected, all instantaneous thermodynamic potentials reach their minimum 
independently both on the values of variables k, l , m, n, and on the value of spatial gas-related 

(liquid-related) parameter TR
(
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And, moreover, the change in space of available thermodynamic parameters of matter that 
gradually cools is inevitably accompanied by the change of its hidden thermodynamic parameters 

mΓ  and lv : 

                                                 
5 It is possible that latent coherence of matter is brought on (together with the new moment of its proper time) by the 
next turn of spiral wave of space-time modulation of dielectric and magnetic permeabilities of physical vacuum [43, 
51]. 
6 Differential equations of the gravitational field specify only the radial gradients of the parameters a and b, and not 
their absolute values. Therefore, at the same point in space, the values of not only the real velocity of radiation 
propagation 

cmv , but also of the parameter 22 −= cvb l
 may differ for different substances that border each other in the 

same space. But the value of the parameter a is taken to be the same for them both in GR and in RGTD. However, the 
possibility of its change together with the change in pressure in the gas cylinder is not excluded. 
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where: r
)

∂  is the increment of metric radial distance. 
And the bigger the distance from matter to the gravitational attraction center the smaller is its 

internal energy. That is why in contrast to inert free energy (which is the greater the greater the 
distance from the substance to the gravitational attraction center) the thermal energy behaves like a 
negative mass. And this is confirmed by numerous investigations of the influence of heating of 
matter on its weight [47 – 49]. 

Precisely the condition of spatial homogeneity of the compressibility coefficient of RGTD-
bonded matter )(/)()( rRtRtZ UTT const== 7 determines the spatial distribution of the set of main 

thermodynamic parameters of this matter that gradually cools. 
Of course, every matter has its values of gravitational potentials, since the common for the 

whole RGTD-bonded matter gravitational field forms only its gradients in the space. However, in 
order to make all thermodynamic parameters of all individual thermodynamic STC of these matters 
conformed with the parameters a and b of Schwarzschild solution of common for them gravitational 
field the appropriate conditions should be fulfilled. 

 
3. Multiplicative representation of thermodynamic parameters and potentials 

with additive compensation that is invariant in time 
Since parameter: 
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expressed not only via constants (including also )(tA const=ρ  which characterizes the quasi-

equilibrium of the process of cooling down of matter throughout the whole time), but also via 
velocity of the light in matter cmv , limit velocity lv  of individual (separate) motion  and Lorentz 

shrinkage of dimensions )(rm const≠Γ  ( )(/0 rmmm const≠Γ=ψψ ) of the matter that moves in the 

process of quasi-equilibriumly cooling down, then only via them we can in temporal form (via ρA ) 

or in spatial form (via TRa ≡ρ ) express instantaneous values of all main thermodynamic parameters 

and potentials of RGTD-bonded matter: 
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7 This is nothing more than the expression of the tendency to align the magnitudes of any intensive parameters of 
matters in the whole filled with them space. Only such main (field) intensive thermodynamic parameters as temperature 
and pressure in principle cannot be (or become) absolutely spatially homogenous in quasi-equilibriumly cooling down 
matter. Some other the fielded intensive thermodynamic parameters, which are related to the possibility of appearance 
of not only gravitational but also magnetic and electric fields in the RGTD-bonded matter, also cannot become 
absolutely spatially homogenous. 
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lmlc vv Γ=  is the limit velocity of individual (separate) motion of matter that gradually cools in 

comoving with it FR (in its own space-time continuum (STC), in which the radial motion of 

molecules of matter that gradually cools is absent); 0)/(
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value of partial additive compensation of multiplicative representation of thermodynamic potentials 
of matter microstate (multiplicative increase of bound energy as we approach the gravitational 

attraction center); G
(

 is the instantaneous value of Gibbs energy G (that is similar to the 

Lagrangian, since it constantly tends to its minimum too). 
As we can see, due to )()( trA const=ρ  when homogeneous matter is quasi-equilibrium cooling 

down the gravitational changes in time of its Gibbs free energy and Helmholtz free energy take 
place similarly to the changes in space of multiplicative component of internal energy 0U  and 

enthalpy 0TH  correspondingly8. Precisely, if: 

[ ] +















∂

Γ∂
+








∂

∂













−++
++−=








∂
∂ ∗

r

m

r

l

mlcmST

ST
ad

r tt

v

nlvc
UU

t

U
)))

lnln

ln)1
~

()/ln(
~

1

~
1)(

0

0
ψβ

β
 

r

m

mlmmST

STad

t

n

nlvc

lUU








∂

∂

−+Γ+

−+
+

∗

)

t
ln

]ln)
~

()/[ln(
~

)(
~

)(

11
1

0

0

ψβ
β , then: 

















∂

∂
+








∂

Γ∂
−=








∂

∂
−=








∂
∂

−







∂
∂

−=







∂

∂

r

l

r

m

r

lc

rrr

T

t

v

t
U

t

v
U

t

V
p

t

T
S

t

F
))))))

lnlnln
00 , 

















∂

∂
+








∂

Γ∂
−=








∂

∂
−=








∂
∂

+







∂
∂

−=







∂
∂

r

l

r

m

T

r

lc

T

rrr t

v

t
H

t

v
H

t

p
V

t

T
S

t

G
))))))

lnlnln
00 , 

where: t
)

∂  is the increment of metric time of matter that gradually cools in a comoving with it FR. 
Moreover, the multiplicative component of only the Gibbs free energy is proportional to the 

absolute temperature of matter not only in space but also in time. It is smaller the lower the 
temperature and, consequently, the higher the limit velocity vlc of individual motion of the matter 
molecules (and the corresponding coordinate pseudo-vacuum velocity of light vcv of GR). 

The equations of thermodynamic state of gas for a predominantly hydrogen Universe would be 
as follows:  

T
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U dRApdVTdSUd ρ+−= ,   pdVTdSFd U −= ,   TT

U dRAVdpTdSHd ρ++= ,  VdpTdSGd U +=  

In the process of free fall of matter in gravitational field the Helmholtz and Gibbs 
thermodynamic free energies, as well as the Hamiltonian of inert free energy of matter, are 
conserved not only due to the presence of weightlessness in its FR ( )(tvv mllc const=Γ= ), but also 

due to the total compensation of the influence of gravitation on its thermodynamic state by the 
motion. However it is possible only in hypothetical absolutely empty space. But when there is a 

                                                 
8 The authors of GR, obviously, intuitively understood this fact. That is why GR is the genial creation, despite the fact 
that it ignores the principal invariance of thermodynamic parameters and potentials relatively to space-time 
transformations. 
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resistance to motion these energies will be gradually increasing due to the matter cannot reach the 
required for their conservation value mΓ  and thus also due to accommodation of the matter of 

falling body to the new thermodynamic state of matter of the environment. 
Before the appearance of spatial inhomogeneity of limit velocity of individual motion of matter 

lv  the only thing that could interfere its distancing from the future gravitational attraction center 

(due to tending of its Gibbs thermodynamic energy to its minimum) was the electromagnetic 
interaction of its molecules. That is why the hypothetic ideal gas and ideal liquid in principle cannot 
create their gravitational field. 

As we see, here we have a dependency of spatial distribution of intrinsic values of these 
thermodynamic parameters and potentials (not the dependency of spatial distribution of other their 
values observed by other clocks and by other length standards) on lcv  (and, so, also on mΓ  and lv ). 

It would be non-logical if mΓ  and lv  would not influence on spatial distribution of the set of 

intrinsic values of main thermodynamic parameters of matter. So this does not contradict to 
invariance of thermodynamic parameters and potentials of matter relatively to the space-time 
transformations [43]. On the contrary, it only confirms the fact that limit velocity lv  of individual 

motion of defined substance, as well as mΓ , is the internal hidden RGTD-parameter of substance 

and not the non-dependent on certain RGTD-state of external gravitational parameter of substance. 
 

4. Physical and other thermodynamic characteristics of matter 

Obviously, the stability of magnitude of extensive parameter pVSTA /2=ρ  takes place in the 

process of quasi-equilibrium cooling down of matter. If we experimentally find its averaged value 
for researched matter at the beginning of the research or if we measure the increments of 
thermodynamic parameters: 
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we can determine its entropy: 
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mathematical expectations of the values of functions of arbitrary changing hidden variables k, l , 
m, n, which are the strictly constant magnitudes during the whole not very long time of the 
existence of any Gibbs thermodynamic microstate. 

However, if we know ε~  and pVβ
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 and if we determine only the molar volume of gas that 

gradually cools and the pressure in it, then we can determine only its bond energy: 
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In order to determine the entropy and, thus, the value of parameter ρA  we should additionally 

measure the temperature of the gas. It is obvious that parameters ε~  and pVβ
~

 of the equation of the 

state of gas (6) can be determined also experimentally in the process of controlled change of its 
bond energy as well as of all its thermodynamic parameters. 

The research of thermodynamic properties of matter should be performed only in its equilibrium 
states or using the dependencies of its thermodynamic potentials on thermodynamic parameters that 
take into account the variability of parameter TR  in the process of this research ( )(tRT const≠ ). In 
order to determine both the thermal expansion coefficient α  and pressure γ  and the elastic 

modulus TK  of gas or liquid it is enough to know only the thermal equation of the state (i.e. the gas 

compressibility coefficient UTT RRZ /= , which is determined by the parameter 

TT RpVR /= ): 
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In order to determine their thermal capacity when volume and pressure are invariant9 and, thus, 
all their thermodynamic potentials we should know not only TR  and critical phasic values of 

pressure crp  and of internal energy multiplicative component lcrcr vcmU /3
00= , but also the 

mathematical expectation pVβ
~

 of the value of hidden variable 0/UVppV

(((
=β : 

=















∂
∂









++=








∂
∂

=
V

T

T

pV

T

pVV

V T

R

R

S
TR

T

U
C

β

β

~
1~

1
 

=
















∂
∂



















−










+++=

V

T

lpV

pV

crpV

T
pVT

pv
T

R

p

p

U

TR
TR

β
β

β
β

β
~ln

~
~ln)

~
1(1~

1






















∂

∂























+














++=









∂

∂
=

V

T

cr

l

pV

crpV

T
T

pvV T

R

U

Vp

U

TR
TR

T

S
T ln

~
~ln1~

1
β

ββ
, 




















∂

∂














+
++

+
=








∂

∂
++








∂
∂

=







∂
∂

=
p

T

TpV

pV

T

pV

pV

p

T
T

pp

p
T

R

R

S
TR

T

R
TR

T

U

T

S
TC

)
~

1(

~

1~

~
1

β

β

β

β
, 




















∂

∂













+−








∂

∂













+

+
+=−

V

T

TpVp

T

TpV

pV

TVp
T

R

R

S

T

R

R

S
TRCC

ββ

β
~
1

~

~
1

,  T

T

T
TpV

T dR
R

TSTR
U

R

R
∫+=

0

~
β

. 

Based on thermodynamic dependencies of thermal capacities when volume and pressure are 
invariant we can determine the mathematical expectation of dependencies of these functions on 
individual parameters TR  and θ , and, consequently, on any pair of main thermodynamic 
parameters: 
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9 Heat capacity when pressure is invariant is determined not by internal energy of the matter itself, but by equivalent to 
its enthalpy the energy of extended system that consists of this matter and the load that supports the needed pressure. 
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The following correspond to the thermal Van der Waals equation [1] of the state of real gases: 
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where: ma  and mb  are individual constants of certain matter. 

According to this we receive the simple expression for the entropy of hypothetical ideal gas: 
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where: )/ln()( 00 crcrVUTVcr UTCRCS += , pVUTV RC β
~

/0= ; crcrUTcr pTRV /=  and crT  are critical phasic values 

of molar volume and temperature of ideal gas; kV  and kT  are their another arbitrary values. 

The following expressions correspond to more precise Dieterici [2] first thermal equation that uses 
an exponent with the same parameter )/( TVRa UTm=θ : 
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Obviously, experimentally found heat capacities of gases can be represented as functions of only 

TR  and θ  parameters. 

Hidden variables STβ  and pVβ  are invariant magnitudes in any moment of time that 

corresponds to the certain Gibbs collective microstate of the whole RGTD-bonded matter. And, 
thus, their derivatives by any thermodynamic parameter are equal to zero. The same can be told 

regarding mathematical expectations of those hidden variables STβ
~

 and pVβ
~

, despite the 

dependence of their values on other thermodynamic parameters of matter. 
 
Conclusion 
Now we know for sure about the four hidden thermodynamic parameters (k, l , m, and n) and 
functions on them ( pVβ , Hβ , STβ , 

pTβ , 
Gβ , 

GRβ ), and functions of the explicit thermodynamic 

parameters ( ρA , TRa ≡ρ , Z, adU , *
adU , pC , VC , TK , α , γ and etc), as well as critical ( crU , 

crS , crp , crT ) and spatially homogeneous ( 00T , 00U , 00H , 00G ) thermodynamic parameters. That is 

why it is now possible to experimentally determine at the points of phase transitions the critical 
values, and at the control points the standard values of the mathematical expectations of the hidden 
parameters, as well as of the corresponding explicit thermodynamic parameters. And on the basis of 
all this it is possible to obtain exact equations of thermodynamic state of real gases and liquids 
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without using corrections. And this is facilitated by the spatial homogeneity of the hidden 
thermodynamic parameters, which correspond to the spatially inhomogeneous states of real matter. 
Of course, this will not deny the expediency of using also approximate equations of thermodynamic 
state of matter based on the use of corrections. 

Enthalpy, which consists of the Lagrangian of its own multiplicative component and additive 
compensation of its multiplicative representation, is de facto the total energy of matter since it 
includes even the released thermal energy and the released kinetic energy of its motion. Enthalpy of 
matter (as well as Gibbs free energy, which multiplicative component is identical to the ordinary 
rest energy of matter and is equivalent to its gravitational mass) is equal in all FRs of bodies that 
move inertially relatively to it. And exactly this is the guarantee of Lorentz-invariance of all 
thermodynamic potentials and parameters of matter. Since matter motion is accompanied by the all-
sided conformally-gaugely self-contraction of its size in background Euclidean space of the 
Universe the rate of the intrinsic time of inertially moving body is not dilated but, quite the 
contrary, remains invariant, despite the presence of gravitational decreasing of the rate of intrinsic 
time for nearby static objects. De facto the motion of the matter as well as its gravitational self-
contraction in background Euclidean space of the Universe leads to its advance over unobservable 
in people’s world evolutionary self-contraction of the conventionally motionless matter in the 
Universe. That is why the release of kinetic energy is always accompanied by the decreasing of 
limit velocity of matter individual (separate) motion (that is equivalent to coordinate velocity of 
light in GR) and the decreasing of its inert free energy. 

The ordinary rest energy of matter is bonded in a different ways in different physical processes. 
That is why we have various free energies in different processes. Both the change of the inert free 
energy of matter (caused by its inertial motion) and its evolutionary decrease in CFREU do not 
directly influence the thermodynamic parameters of matter that are changed only in thermodynamic 
processes. That is why it is fundamentally unobservable in intrinsic FRs of matter in the similar 
way as evolutionary and caused by motion reduction of molar volume of matter is unobservable in 
comoving with expanding Universe FR. The gravitational reduction of molar volume of matter 
when approaching the gravitational attraction center is also unobservable directly in intrinsic FRs 
of matter. However, we still can say about its presence in Euclidean space of CFREU due to the 
presence of gravitational curvature of intrinsic space of matter. 

The hidden thermodynamic parameters discovered here (which, similarly to wave functions, 
can take on any values with a certain probability) confirmed Gibbs's idea of the presence of a 
multitude of instantaneous thermodynamic microstates in matter that is in an invariable quasi-
equilibrial state. The another important thing is the substantiation of the fact that the limit velocity 
of individual (separate) motion of matter and the indicators of the relativistic-gravitational decrease 
in the molar volume of matter in the background Euclidean space do belong to the hidden internal 
thermodynamic parameters [50]. Therefore, an external relativistic interpretation of 
thermodynamics is not needed. And therefore, all thermodynamic parameters and potentials are 
invariant both gravitationally and relativistically. After all, all gravitational and relativistic 
influences on them are already contained in their formation as hidden parameters. 

The acceptance of the fact of existence of an extensive parameter (that is spatially 
homogeneous in the gravitational field), characterizing the compressibility of gases, and a spatially 
inhomogeneous intensive thermodynamic parameter (that is invariant during the gas leisurely 
cooling process) allows us to consider the gravitational field as a consequence of a spatially 
inhomogeneous gravithermodynamic state of both any continuous matter and arbitrarily rarefied 
gas-dust matter of the cosmic vacuum. 

The proved here equivalence of the Hamiltonian of the inert free energy to the inertial mass of 
matter, and the equivalence of Lagrangian of the ordinary rest energy (and the multiplicative 
component of the Gibbs free energy identical to it) of matter to a much larger gravitational mass 
[41, 42] have solved the problem of the shortage in baryonic mass in distant galaxies of the 
Universe. And it is this, together with the logarithmic gravitational potential [52, 53], that allows us 
to abandon the need for non-baryonic dark matter in the Universe. 
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